Enhancing the reactivity of nickel(ii) in hydrogen evolution reactions (HERs) by β-hydrogenation of porphyrinoid ligands.
نویسندگان
چکیده
Fine-tuning of the porphyrin β-periphery is important for naturally occurring metal tetrapyrroles to exert diverse biological roles. Here we describe how this approach is also applied to design molecular catalysts, as exemplified by Ni(ii) porphyrinoids catalyzing the hydrogen evolution reaction (HER). We found that β-hydrogenation of porphyrin remarkably enhances the electrocatalytic HER reactivity (turnover frequencies of 6287 vs. 265 s-1 for Ni(ii) chlorin (Ni-2) and porphyrin (Ni-1), and of 1737 vs. 342 s-1 for Ni(ii) hydroporpholactone (Ni-4) and porpholactone (Ni-3), respectively) using trifluoroacetic acid (TFA) as the proton source. DFT calculations suggested that after two-electron reduction, β-hydrogenation renders more electron density located on the Ni center and thus prefers to generate a highly reactive nickel hydride intermediate. To demonstrate this, decamethylcobaltocene Co(Cp*)2 was used as a chemical reductant. [Ni-2]2- reacts ca. 30 times faster than [Ni-1]2- with TFA, which is in line with the electrocatalysis and computational results. Thus, such subtle structural changes inducing the distinctive reactivity of Ni(ii) not only test the fundamental understanding of natural Ni tetrapyrroles but also provide a valuable clue to design metal porphyrinoid catalysts.
منابع مشابه
Enhancing the reactivity of nickel(ii) in hydrogen evolution reactions (HERs) by β-hydrogenation of porphyrinoid ligands† †Electronic supplementary information (ESI) available. CCDC 1528290, 1554494 and 1554445. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc02073b Click here for additional data file. Click here for additional data file.
متن کامل
Preparation of Lanthanum–Nickel–Aluminium Perovskite Systems and their Application in Methane-Reforming Reactions
In this study we developed LaNixAl1-xO3 perovskite systems using a sol-gelmethod (with propionic acid as solvent) to use in methane-reforming reactions for producing synthesis gas. To understand the roles of the nature of the precursor and calcination conditions on the formation of LaNixAl1-xO3, we carried out identifications using NMR, FT-IR, XRD, SEM, and TEM. The precursor struc...
متن کاملHydrogenation of Renewables
Hydrogenation reactions have a variety of applications in the chemical industry which is shown by the corresponding products, such as ammonia, methanol, and polyamides. In petrochemistry, the addition of hydrogen is used to adjust properties of product mixtures, e.g. in the hydrocracking or hydrotreating. For renewables the same is already feasible or first proofs of concept were already shown....
متن کاملEffect of support nature on performance and kinetics of nickel nanoparticles in toluene hydrogenation
The kinetics of toluene hydrogenation over Ni-supported catalysts with various supports was investigated under the wide range of conditions as 130 to 210 °C reaction temperature, 2.6×10-5 to 5.9×10-5 atm partial pressure of hydrogen and 1.4×10-9 to 3.7×10-8 atm partial pressure of toluene. For more study, two kinetics models were also selected and studied to describe the kinetics of this proces...
متن کاملNickel Hydrogenation Composite Catalysts Modified by Zirconium in Competitive Benzene Hydrogenation: Effect of Modifiers
A co-impregnation method was applied to the Ni/Zr-HMS/HZSM-5 catalyst (with various amounts of zirconium) during the hydrogenation of benzene. The physicochemical properties of the prepared nickel catalyst were characterized using X - ray diffraction, X - ray fluorescence, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, temperature-programmed desor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical science
دوره 8 9 شماره
صفحات -
تاریخ انتشار 2017